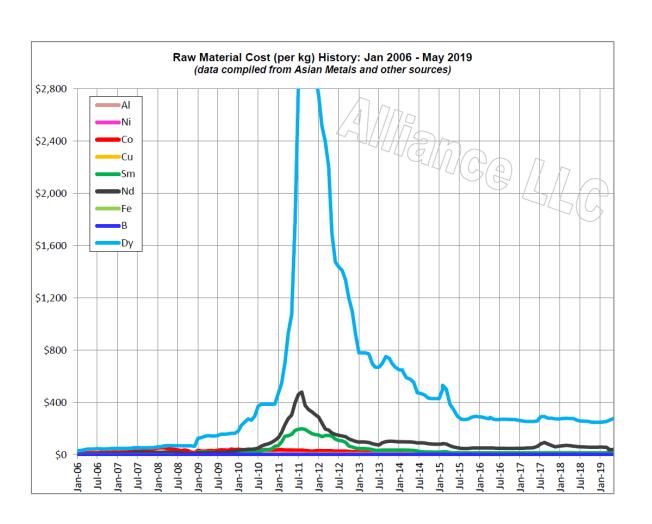
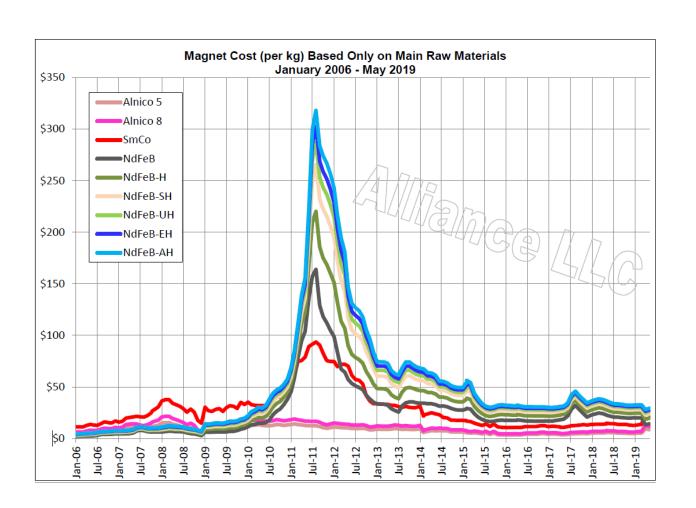

Permanent Magnet Economics

Robert Wolf Alliance LLC


The Magnet Family


Magnet Materials

Materials	Typical Shapes	Pros	Cons
Cast Alnico AlNiCo	Rods, Bars, U shape and other cast type	High Br High working T Good T coef.	Very Low Hc High cost High L/D Requires Cast
Sintered Alnico AlNiCo	Powder pressed to shape	Complex shapes High Br, T	Requires Tool High cost Low market
Ceramic/Ferrite SrFe ₂ O ₃	Blocks, Rings, Arcs, Discs	Most flux for \$ High usage Low corrosion	Low Br Requires tool Simple shapes
Samarium Cobalt SmCo	Blocks, Rings, Discs Arcs, Segments	No corrosion Very low T coef Stable, No tool	Very expensive Simple shapes High Co content
Neodymium NdFeB	Blocks, Rings, Discs Arcs, Segments	Highest magnetic properties No tooling	Corrodes Low working T Difficult to Mag
Bonded Grades All materials	Difficult geometries Can be insert molded or overmolded	Complex shapes Various resins	High toolings Low magnetics High volumes

Material Costs For Magnets

Magnet Costs Based on Materials

Cost Considerations

- Energy
- Materials
- Labor
- Government Regulations
- Environmental Issues
- Taxes–VAT, import, export, income
- Shipping
- Currency exchange rates

Primary Sources of Energy

- Coal
- Oil
- Wind
- Hydroelectric
- Nuclear
- Solar

Energy used to Mine & Refine Materials

- Aluminum
- Nickel
- Cobalt
- Rare Earth
- Iron Oxide
- Steel

Materials Used in Manufacturing

- Magnets
- Batteries Lithium ion & NiMH
- Catalysts for
- a) petroleum refining
- b) automotive catalytic converters
- Paints & pigments
- Super alloys
- Lighting
- Motors & Generators

Applications of Magnets

- Transportation cars / trains / airplanes / trucks / ships
- Construction home / commercial
- Energy Production generators / batteries / flywheels
- Environment air purifiers / water purification
- Military Defense equipment
- Industrial motors / sensors

Rare Earths

- In 2019, Rare earths were minimally mined in the United States at Mountain Pass CA.
- Bastnäsite deposits in China and the United States constitute the largest percentage of the world's rare earth economic resources
- cerium compounds used in automotive catalytic converters and in glass additives and glass polishing compounds;
- rare-earth compounds used in automotive catalytic converters and many other applications;
- yttrium compounds used in color televisions and flat-panel displays, electronic thermometers, fiber optics, lasers, and oxygen sensors; and phosphors for color televisions, electronic thermometers, fluorescent lighting, pigments, superconductors, x-ray-intensifying screens, and other applications

Rare Earths

- mixed rare-earth compounds and for rare-earth metals and their alloys used in armaments, base-metal alloys, lighter flints, permanent magnets, pyrophoric alloys, and superalloys.
- rare-earth chlorides used in the production of fluid cracking catalysts used in oil refining.
- The trend is for a continued increase in the use of rare earths in many applications, especially automotive catalytic converters, permanent magnets, and rechargeable batteries for electric and hybrid vehicles.

Iron Oxide for Ferrite Magnets

- Byproduct of the pickle liquor from production of cold rolled steel (CR)
- CR steel is used primarily in automotive and white goods markets, both of which are depressed
- Consequently, the production of iron oxide is drastically reduced

Iron Oxide Usage

- Historically for 10% pigment, 20% water treatment and 70% ferrite
- Now its 10% pigment, 40% water treatment and 50% ferrite BUT
- CR Steel production is off by 50% causing a
- Oxide shortfall of 50%

World Steel Production 2018 (thousands of metric tons)

EU/Europe/CIS	168,200	9.3%
N America USA	86,700	4.8%
N America Other	33,200	1.8%
Asia China	928,300	51.3%
Asia Japan	104,300	5.8%
Asia other	109,800	6.1%
Other	378,000	20.9%
Total	1,808,600	100.0%

Iron Oxide Availability

- Water treatment market is increasing
- They used to take ferric oxide and convert to ferric chloride
- Now they buy the ferric chloride directly, in bulk, with no special packaging at the same or higher price as the ferric oxide.
- Consequently, less material and higher prices for magnet production.

Iron Oxide & RMB History 2007-2013

